Polynomial Functions Over Bounded Distributive Lattices

نویسندگان

  • Miguel Couceiro
  • Jean-Luc Marichal
چکیده

Let L be a bounded distributive lattice. We give several characterizations of those Ln → L mappings that are polynomial functions, i.e., functions which can be obtained from projections and constant functions using binary joins and meets. Moreover, we discuss the disjunctive normal form representations of these polynomial functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterizations of discrete Sugeno integrals as polynomial functions over distributive lattices

We give several characterizations of discrete Sugeno integrals over bounded distributive lattices, as particular cases of lattice polynomial functions, that is functions which can be represented in the language of bounded lattices using variables and constants. We also consider the subclass of term functions as well as the classes of symmetric polynomial functions and weighted minimum and maxim...

متن کامل

Associative Polynomial Functions over Bounded Distributive Lattices

The associativity property, usually defined for binary functions, can be generalized to functions of higher arities as well as to functions of multiple arities. In this paper, we investigate these two generalizations in the case of polynomial functions over bounded distributive lattices and present explicit descriptions of the corresponding associative functions. We also show that, in this case...

متن کامل

Quasi-polynomial Functions over Bounded Distributive Lattices

In [6] the authors introduced the notion of quasi-polynomial function as being a mapping f : Xn → X defined and valued on a bounded chain X and which can be factorized as f(x1, . . . , xn) = p(φ(x1), . . . , φ(xn)), where p is a polynomial function (i.e., a combination of variables and constants using the chain operations ∧ and ∨) and φ is an order-preserving map. In the current paper we study ...

متن کامل

Interpolation by polynomial functions of distributive lattices : a generalization of a theorem of R. L. Goodstein

We consider the problem of interpolating functions partially defined over a distributive lattice, by means of lattice polynomial functions. Goodstein’s theorem solves a particular instance of this interpolation problem on a distributive lattice L with least and greatest elements 0 and 1, resp.: Given a function f : {0, 1}n → L, there exists a lattice polynomial function p : Ln → L such that p|{...

متن کامل

Distributive lattices with strong endomorphism kernel property as direct sums

Unbounded distributive lattices which have strong endomorphism kernel property (SEKP) introduced by Blyth and Silva in [3] were fully characterized in [11] using Priestley duality (see Theorem  2.8}). We shall determine the structure of special elements (which are introduced after  Theorem 2.8 under the name strong elements) and show that these lattices can be considered as a direct product of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Multiple-Valued Logic and Soft Computing

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2012